Glenis et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:7

http://www.journalofcloudcomputing.com/content/2/1/7

® Journal of Cloud Computing

a SpringerOpen Journal

Flood modelling for cities using Cloud

computing

Vassilis Glenis', Andrew Stephen McGough?”, Vedrana Kutija', Chris Kilsby' and Simon Woodman?

Abstract

Urban flood risk modelling is a highly topical example of intensive computational processing. Such processing is
increasingly required by a range of organisations including local government, engineering consultancies and the
insurance industry to fulfil statutory requirements and provide professional services. As the demands for this type of
work become more common, then ownership of high-end computational resources is warranted but if use is more
sporadic and with tight deadlines then the use of Cloud computing could provide a cost-effective alternative.
However, uptake of the Cloud by such organisations is often thwarted by the perceived technical barriers to entry. In
this paper we present an architecture that helps to simplify the process of performing parameter sweep work on an
Infrastructure as a Service Cloud. A parameter sweep version of the urban flood modelling, analysis and visualisation
software “CityCat” was developed and deployed to estimate spatial and temporal flood risk at a whole city scale — far
larger than had previously been possible. Performing this work on the Cloud allowed us access to more computing
power than we would have been able to purchase locally for such a short time-frame (~21 months of processing in a
single calendar month). We go further to illustrate the considerations, both functional and non-functional, which need

to be addressed if such an endeavour is to be successfully achieved.

Keywords: Cloud computing, Task execution, Flood modelling, Parameter sweep execution

Introduction

We are now able to collect vast quantities of data about
the physical world but this has little significance until we
are able to process it, through analysis or simulation, to
extract understanding and meaning. The so called fourth
paradigm [1] of data-intensive discovery often requires
significant computational power. All sectors of society
(commercial, public and academic) have a need to exploit
this new approach.

For large organisations (companies, governments or
large research projects) access to appropriate levels of
computational resources is easily within their reach. How-
ever, for smaller organisations this can often be beyond
their means — especially if the organisation is not expect-
ing to make significant use of the resources. Tradition-
ally these organisations have relied on access to shared
resources managed by others or making do with the
resources available — which may preclude them from

*Correspondence: stephen.mcgough@newcastle.ac.uk

2School of Computing Science, Newcastle University, Newcastle upon Tyne,
UK

Full list of author information is available at the end of the article

@ Springer

meeting tight deadlines or require them to make com-
promises in order to achieve these deadlines. These com-
promises may be through reduced complexity models
(simpler or less realistic) or the processing of smaller data
sets than desired.

The problem outlined above is no more prevalent than
in cases where an organisation is required to complete a
task within pre-defined budget and time-limit constraints.
The use of the Cloud [2] offers a potential solution by
allowing the organisation to gain access to vast quan-
tities of computing power almost instantaneously, often
far greater quantities of computing power than the bud-
get would allow them to purchase and use within the
defined time-constraints and without the associated lead-
time required to acquire and install resources. The use of
the Cloud does, however, lead to a situation where after
completion of the task the organisation lacks any collat-
eral which could be used for future tasks. However, if such
task requirements are rare these extra resources would
have little if any value for the organisation. Thus the choice
to use the Cloud or not rests on an analysis of the cost-
time benefits of performing the work on the Cloud as

© 2013 Glenis et al,; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

Glenis et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:7

http://www.journalofcloudcomputing.com/content/2/1/7

opposed to a comparison with upfront purchasing of the
appropriate hardware resource(s).

The Cloud allows scaling of resource to meet current
needs with payment being only for the time that the
organisation ‘rents’ the resources. This allows organisa-
tions access to a wide variety of computational resource
types either not normally available to them or which
would not gain enough utilisation to warrant purchasing.

Many organisations are required to run the same soft-
ware (often developed by themselves or adapted to their
own needs) multiple times with different starting condi-
tions in order to determine characteristics about a prob-
lem space or identify an “optimal” solution. This process,
referred to as parameter sweep, can be performed in par-
allel over a large number of computers and would seem
to match nicely with the Cloud model of (apparently) infi-
nite resources available on demand. If the same software
is required by many different users then the process of
performing the parameter sweep and this software can
be made available to the end user in a Software as a Ser-
vice (SaaS) manner in which the user interacts with the
Cloud through an external interface with all work being
performed for them. However, if the user wishes to run
his/her own software then such a SaaS offering could
be too restrictive. Instead tooling could be provided to
an Infrastructure as a Service (IaaS) simplifying the pro-
cess of performing parameter sweep executions. However,
adding an external user interface to these tools would
allow them to be exposed as a SaaS.

Once a decision is made to run large parameter sweeps
on the Cloud, then the development of a parameter
sweep-ready task is needed. This often requires making
the jobs which make up the task parameter sweep-ready-
removing the need to interact directly with each job thus
allowing many jobs to be invoked quickly, and providing
the correct environment in which to run the job [3]. Tasks
then need to be enacted on the Cloud-provisioning appro-
priate resources on the Cloud, uploading of executables
to the Cloud along with any associated dependencies and
data, the execution of the jobs and finally the staging of
data back to the organisation. This process is clearly non-
trivial to perform and not unique to the Cloud—similar
problems exist in Grid and other distributed computing
environments.

Although the financial barrier to using the Cloud is
(relatively) low, the technical aspect of actually using the
Cloud is still a barrier to entry. Many organisations lack
the technical expertise to deploy work to the Cloud and
make efficient use of it, reducing uptake. Also if digital
technologies are not the core activities of the organisation
neither should we expect them to be proficient in using
Cloud infrastructure.

In this paper we propose a generic architecture which
automates many of the stages in using the Cloud for

Page 2 of 14

parameter sweep based batch-processing type problems,
thus reducing the barrier to entry for organisations. We
exemplify the use of this architecture for an applica-
tion in pluvial flood risk assessment using the CityCat
flood modelling simulation tool to identify areas of high
flood risk during rare-event storms (once every one to
200 years). We further exemplify the cost-time implica-
tions by having a limited budget of £20,000 (~$32,500)
and a project deadline of one month. Assessing both
the perceived ‘best’ Cloud provider to use a priori
along with an assessment of the performance achieved
from running these simulations. We present preliminary
results for the Pluvial flood modelling before consider-
ing the non-functional issues encountered during this
work.

Background and related work

Flood risk assessment using CityCat

Pluvial flood risk analysis, where intense direct rainfall
overwhelms urban drainage systems, is complex and time-
consuming as it is sensitive to the spatial-temporal charac-
teristics of rainfall, topography of the terrain and surface
flow processes influenced by buildings and other man-
made features. Assessment of urban flood risk is based on
the results of flood models which provide the depth and
velocity of surface water generated by intense rainfall. Sur-
face water flow is well described by the two dimensional,
depth averaged, hydrodynamic shallow water equations
which are partial differential equations of time depen-
dent conservation of mass and momentum [4]. These
equations can only be solved using a numerical method
which requires discretisation of the domain into small
cells and discretisation of the period of simulation into
small time steps.

The method of finite volumes with higher order accu-
rate shock capturing schemes provides the most accurate
solution for propagation of flood wave over initially dry
surfaces and for flows with discontinuities [5]. However,
it requires significant computation at each cell at each
time step. Additionally, in order to ensure stability of
the numerical solution, adaptive time steps based on the
Courant-Friedrichs-Lewy (CFL) condition are used [6].
This results in variable time steps ranging from 0.01 s to
10 s due to the size of the cells and the changeable flow
conditions. Smaller time steps increase the execution time
of the simulation. Therefore accurate and stable solutions
require the modelling of large domains at high resolution.
This leads to high memory requirements (~40GB) and
execution times (~weeks). However, a meaningful flood
risk assessment requires modelling of multiple rainfall
events, covering different durations and probabilities of
occurrence. This increases significantly the computational
requirements and it becomes exacerbated when future
climate scenarios are considered.

Glenis et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:7

http://www.journalofcloudcomputing.com/content/2/1/7

Due to these computational complexities the assess-
ment of pluvial flood risk is usually carried out at relatively
small scales using a restricted number of design storms
[7]. Alternatively, for large city-scale assessments, simpli-
fied models are used [8]. The use of fully detailed numeri-
cal models for larger areas is in its infancy for two reasons.
Firstly, most of the models in this field are compiled as
32-bit applications and this limits the addressable mem-
ory and constrains the size of the computational domain.
Secondly, detailed modelling of larger areas results in
high computational requirements which are best resolved
using High Performance Computing (HPC) or cluster
based facilities. However, such facilities might not be
easily accessible to water consulting and engineering com-
panies and local authorities that have to carry out flood
risk assessment studies.

Cloud for computationally intense applications

Using the Cloud for computationally intense tasks has
been seen in recent years as a convenient way to pro-
cess data quickly. Deelman [9] evaluated the cost of
using Amazon’s Elastic Compute Cloud (EC2) [10] and
Amazon’s Simple Storage Service (S3) [11] to service
the requirements of a single scientific application. Here
we add the constraints of memory dominant executions
under fixed time limits.

De Assuncao [12] proposed the use of Cloud computing
to extend existing clusters to deal with unexpectedly high
load — greater than that which can be handled locally. This
work was further extended by Mattess [13] by proposing
the use of Amazon spot instances, supply-and-demand
driven pricing of instances, to further reduce the cost of
Cloud Bursting. Our approach differs to these in that we
seek to optimise the execution of a single set of simula-
tions rather than the general capacity of an organisation.
However, we see that the use of spot instances could be a
mechanism to increase the number of hours available for
a given budget.

Palankar [14] showed the criticality of data locality in
the Cloud. In our work we take into account the effects
of uploading and downloading data from the Cloud by
making use of Cloud storage facilities such as S3. This
minimises external data transfers and allows instances to
terminate sooner.

Evangelinos [15] evaluated the use of Cloud resources
for running High Performance Computing applications,
showing a decrease in performance in comparison with
dedicated supercomputing facilities and more akin to low-
cost clusters. However, as our application is processing
parameter sweeps of jobs in a batch-processing manner
(often referred to as High Throughput Computing) we do
not expect to see the same degradation in performance.

Lu [16] presents an application for processing gene
sequences on the Cloud. Although this work is similar, in

Page 3 of 14

batch-processing, to our own we present a more generic
architecture.

Cloud execution architecture

Staff in many organisations do not possess the skills to per-
form parameter sweep executions on the Cloud — starting
up Cloud instances, deploying and managing jobs on these
instances along with transferring data to and from the
Cloud. Nor should they be expected to perform such
tasks-especially if their need to use the Cloud is intermit-
tent and not part of their main function. In this section
we present an architecture which abstracts the user away
from the complexities of using the Cloud to perform
parameter sweep executions presenting them instead with
a command line interface that captures the information
required to run these executions on the Cloud.

Figure 1 shows the architecture for our system which
interacts with an Infrastructure as a Service Cloud offer-
ing. The user interacts with the system through the user
interface — currently this is a command line interface
though this could easily be replaced by a GUI or web por-
tal. The user interface sends information to the Cloud
Enactor which is responsible for deploying new cloud
instances when required and terminating those that are no
longer required. The Cloud enactor is also responsible for
simple task deployment to the Cloud (starting a task off
on a Cloud instance) along with monitoring these running
tasks. We exploit the load-balancing facilities of existing
batch queuing technologies such as HTCondor [17] in
the situation where the number of Cloud instances is less
than the number of parameter sweep jobs we wish to per-
form. DeltaCloud [18] is used to abstract us away from the
underlying Cloud infrastructure allowing our architecture
to run over multiple Clouds.

The user interface collects information about the max-
imum number of instances to use and the location of a
compressed file containing the executable (or script to
run) including any settings, dependencies or data required
by the executable [3], other compressed files (which are
assumed to be further data used by the executable), the
number of runs which are to be processed, along with the
name of the executable.

The first compressed archive is inspected to see if
the named executable appears within the root direc-
tory of the archive. In such cases it is assumed that
the particular parameter sweep task is enacted by the
cloud enactor passing an index value when invoking the
executable. Otherwise it is assumed that there will be
n sub-directories within the archive each containing a
copy of the executable. Where # is the number of runs
to perform. It should be noted that these directories
need not contain the actual executable but may con-
tain a script that calls a single executable stored in a
different location.

Glenis et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:7

http://www.journalofcloudcomputing.com/content/2/1/7

Page 4 of 14

Cloud Enactor

Deploy

o SOS

Terminate

soBpBIUI 18

did

Monitor

pnoio eyeq

Figure 1 Architecture for Cloud parameter sweep. Outline architecture for Cloud parameter sweep system.

Cloud interaction is handled through the Cloud enactor
module. The archives are first uploaded to the Cloud data
store (such as Amazon S3 [11]) before Cloud instances
are deployed. Once deployed the Cloud enactor gives
each instance the locations of the archive(s) in Cloud
storage. The instance can then download and decom-
press these before executing them. The system provides
two execution models. If the maximum number of Cloud
instances is smaller than the number of parameter sweep
jobs then the tasks will be deployed through a HTCon-
dor [17] cluster, provisioned by the Cloud enactor, formed
from the deployed instances. We use HTCondor here
as our own deployment mechanism does not support
load-balancing of work across resources. However, if the
number of Cloud instances matches the parameter sweep
count then the jobs will just be deployed on the Cloud
instances. This removes the overheads of deploying and
using HTCondor on the Cloud just to execute a single job
per instance.

Once a task has completed then the files which remain
will be compressed before uploading to the Cloud stor-
age. Due to data transfer costs the application developer
is encouraged to delete any superfluous files as part of
his/her executable (or script) before the job terminates.

Once all tasks are completed on a given instance
then the instance will be terminated. All result data are
uploaded to the user’s own storage space on the Cloud for
later retrieval through the (command line) interface.

Parameter sweep enabling the CityCat application

“CityCat” is an urban flood modelling, analysis and visu-
alisation tool. It is based on the solution of the shallow
water equations using the method of finite volume with
shock-capturing schemes. Originally, CityCat was devel-
oped and compiled as a 32-bit application using Borland
Delphi [19], under the Windows operating system with an
integrated Graphical User Interface (GUI) for data prepa-
ration and visualisation of results. Figure 2 shows the

Fle Edt Project Bun Tools Help

DBE@-B e |2

365Days OHrs OMins 0Secs Period
0Days OHis OMins 05ecs Time
OHrs OMins 05ecs Est.

Prsiect | Propeties | Object | Selestion| Model Mesh | Real Time Giaphs | Real Time Series | Model Walches | Resuits | Longitudinal Sections | Suface |
- e - HH ST A HHHHHH B u_—’ Show Gid |
%, Cell Settings Cell 121 [= EEH ! =t St = t ; = st
< N N s T ,-r
General |Flounhness| Initial Condtions | __i___ ;’ P X Tood Map I
1 = - E ¥
= +H H ~]
Centre (ﬂ)‘\ - Green Areas
Xl fcet 122 \KY ol
23778 . »)\‘ LG sres Fom b |
¥ fm) 810 [cen 121[cel 225 o Buidings
564534 |
Z(m _I Cell 120
3000089 —— Rainfall Data
X Slope ¥ Slope Area(m?) Perimeter [m) 3 Longitudinal Frofile Cells
0 0 16 % X
T
T
CellName [Cell 21 - "
¥
Mumber of Points = 4 Ly
Number of Lines = 4 B | L 5t
: Hote: To Create 5 Profile
I i E use the Selection Tahin
[-] '\ } the Ispectar
;
f : : ==
i i ; i 2 WS mmmn i‘
15071 : Cells il | | [X: 424403.900(]: 564682200 2

Figure 2 User interface of the original CityCat application. The Graphical User Interface for the Original CityCat application.

Glenis et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:7

http://www.journalofcloudcomputing.com/content/2/1/7

original GUL Note that, as well as dividing the landscape
up into a regular grid of cells, buildings are ‘stamped’
out of this grid. However, this configuration of CityCat
is not easily usable in a parameter sweep consisting of
many invocations as it requires the interaction of the user
through the GUI in each invocation. In order to over-
come this limitation a new version was developed by
separating the computational engine from the GUI. The
computational engine can be controlled through the use of
configuration scripts which contain the initial parameters
and the input/output file names.

The maximum addressable memory of 4GB for the
32-bit CityCat application limited the number of compu-
tational cells to less than one million. To overcome this
limitation a 64-bit version of the application was devel-
oped and this enabled simulations of much larger domains
using the high memory instances on the Cloud.

Deployment of a Windows application on the Cloud
requires the installation of the Windows OS at each Cloud
instance and this incurs additional costs. In order to avoid
unnecessary expenditure and allow for 64-bit compila-
tion (increasing the size of models that could be run),
the model was ported and compiled under Linux using
the Lazarus Linux IDE [20] and the Free Pascal compiler
[21]. This had an impact on the performance of the code,
increasing the execution time by approximately 10% —
assumed to be a consequence of moving from 32-bit to 64-
bit code and the Free Pascal compiler not optimising the
code as well as the Delphi compiler. However, as the sav-
ing in cost for using Linux based instances was at least 20%
this increase in execution time was considered acceptable
as it was felt that the increase in the number of instances
which could be run offset the increased execution time.

Scientific experimental environment

We have been able to apply the computational engine
of CityCat to much larger domains and for more exten-
sive event durations (through the ability to run multiple
long-running simulations on the Cloud). Three different
domains, ranging in size from one million to 16 million
cells were tested, much larger than the domains used in
current engineering practice — normally of the order of
5,000 to 50,000 cells. Additionally, for one of the domains,
four different grid sizes were used which resulted in very
different model sizes. Table 1 shows the different areas
used within this work. All of the pluvial flood models were
then run using a set of 36 rainfall events, containing a
combination of six different return periods and six dif-
ferent storm durations. See Table 2 for the storm details.
Rainfall events were generated following the standard
FEH procedure [22]. All these simulations required differ-
ent memory and computational effort leading to differing
run times. Table 3 presents the system requirements, in
terms of memory, for these simulations. Note that the

Page 5 of 14

index for these simulations (column 1) matches with the
index (column 1) of Table 1.

Cost-time analysis for the CityCat simulations

Here we investigate the cost-time analysis of using
different Cloud options along with the relative cost
for performing the same work on locally provisioned
resources. The CityCat application is a single threaded
simulation model which is memory dominant — we
use the memory requirements which were presented in
Table 3.

As it is not possible to tell a priori the exact amount
of time that these simulations will take to perform we
instead define two metrics by which to compare the cost
of using each offering: cost per simulation hour and max-
imum number of hours available within a single month.
The cost per simulation hour for Cloud offerings is com-
puted as p/c where p is defined as the unit cost per hour,
for the Cloud instance, and c is the number of concurrent
runs of CityCat that the instance can handle without each
run affecting the others. For locally provisioned resources
we can define the cost per unit hour as p = E/M, where E
is the cost of purchasing the resource and M is the num-
ber of hours during which the work we are conducting
must be completed — in our case one month. We appreci-
ate that this artificially gives higher values for purchasing
resources locally and hence do not use this as justifica-
tion for using Cloud resources over local resources, only
including it here for comparison.

Although (in theory) the number of Cloud hours avail-
able per month is infinite there are practical limitations on
this, cost and vendor capping being the most significant.
Each vendor provides a capping limit on the maximum
number of instances which can be running concurrently —
Amazon for example limits this to 20 per region — though
this limit can be overcome through prior arrangement
with the vendor. We therefore provide a figure for the
number of hours available as ¢ x i x &1, where c is the num-
ber of concurrent runs of CityCat on the resource, i is the
number of resources that can be run (the lower of 36 or
the maximum number of resources which keeps us within
budget) and / is the number of hours per month. The
same equation is used for locally provisioned resources
with i limited to the number of resources which can be
purchased.

Note that a selection of Cloud providers have been eval-
uated here, though not all. All evaluations were conducted
in November 2011. Note that although each offering will
exhibit different run-times — a consequence of variations
in processor speed and memory bandwidth — these con-
siderations are not being taken into account here as we
expect these to be marginal. We present below only the
cost-time analysis for the small data problem (simulation
sets 1 and 4) — i.e. 3GB memory requirement, and the very

Glenis et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:7 Page 6 of 14
http://www.journalofcloudcomputing.com/content/2/1/7
Table 1 The different areas and scales used for the simulations
Domain Area Cell Boundary Event Number
size conditions duration of runs
1 Newcastle 4 km? 2m Rainfall See rainfall 36
city centre events 1-36 events
2 Newcastle 4 km? m Rainfall See rainfall 36
city centre events 1-36 events
3 Newcastle 4 km? 05m Rainfall See rainfall 36
city centre events 1-36 events
4 Newcastle 4 km? 2m Hypothetical 2 hrs 1
city centre flood wave
5 Whole Newcastle 120 km? 4m Rainfall See rainfall 36
City Council area events 1-36 events
6 Thames ~1100 km? 15m Tidal surge 33 hrs 2
estuary water level and 21 hrs

large data problem (simulation set 3) — 40GB memory
requirement.

Locally provisioned resources

A large server machine purchased by the School of Com-
puting in November 2011 cost ~ £3,182 (~$5,142), this
had 12 CPUs and 128GB RAM. Table 4 shows the cost-
time analysis for this resource. Given our initial budget we
could have purchased six such servers. Note that the cost
of installing managing and energy for these servers is not
factored in here. We assume that the remaining money
would cover these costs. We also do not factor in the time
for delivery and commissioning of such systems — which
would often take longer than our one month deadline —
and appreciate that this cannot be fairly compared with

the Cloud. Hence, we do not use this as a justification for
or against the use of the Cloud, rather just a compari-
son of the cost for performing work on locally provisioned
resources.

Amazon EC2 instances

Amazon Elastic Cloud Compute (EC2) [10] offers com-
putational power as an Infrastructure as a Service (IaaS).
Amazon has a large range of computational offerings.
Table 5 shows the cost-time analysis for EC2 for the 3GB
simulation runs and Table 6 for the 40GB simulation
runs. Note that in all cases only resource types capable of
running the simulation are provided. Also note that the
number of concurrent instances of the software is com-
puted from the number of concurrent runs which can fit

Table 2 Frequency and duration of the different rainfall events

Rainfall Return period Duration Rainfall Return period Duration Rainfall Return period Duration
event years mins event years mins event years mins
1 2 15 13 20 15 25 100 15

2 2 30 14 20 30 26 100 30

3 2 60 15 20 60 27 100 60

4 2 120 16 20 120 28 100 120
5 2 180 17 20 180 29 100 180
6 2 360 18 20 360 30 100 360
7 10 15 19 50 15 31 200 15

8 10 30 20 50 30 32 200 30

9 10 60 21 50 60 33 200 60
10 10 120 22 50 120 34 200 120
11 10 180 23 50 180 35 200 180
12 10 360 24 50 360 36 200 360

Glenis et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:7

http://www.journalofcloudcomputing.com/content/2/1/7

Table 3 Computational requirements (size and memory)
for the six simulation areas

Number of cells Cell size Required memory
1 1,000,000 2m 3GB
2 4,000,000 Tm 11GB
3 16,000,000 05m 40GB
4 1,000,000 2m 3GB
5 7,500,000 4m 20 GB
6 ~5,000,000 5m 13GB

into memory at the same time. As the code was unable
to exploit more than one core the processor load was not
considered.

In the case for the small simulation runs (3 GB) the
Quad XL and Double XL instances show the best cost-
time values. Thus going for the larger instances and
running multiple simulations concurrently would appear
to give better cost-time performance. Only one resource
type is capable of running the large (40 GB) jobs—Quad
XL.

Microsoft Azure instances

Microsoft Azure [23] offers a Platform as a Service (PaaS)
option on which users are given a modified Windows 2008
server instance. At the time of analysis Azure was unable
to offer instances capable of running the 40GB simula-
tion. Table 7 shows the cost-time analysis for the Azure
instance types running the 3 GB jobs.

Azure provides a very level offering in which the simula-
tion cost per hour is the same for all instance types along
with the number of hours which could be used within a
month.

GoGrid instances

GoGrid [24] offers IaaS instances in which each offer-
ing is effectively double, in core count, memory and disk
space, the previous instance. GoGrid had instance types
which support the 3 GB simulation jobs and the cost-time
analysis is presented in Table 8.

GoGrid provides a slight advantage for their largest
instance type (16/16/800) though this is more due to the
ability to pack simulations more efficiently into memory
than due to their costing model.

Table 4 Cost-time analysis for locally provisioned
resources

Simulation memory Cost per simulation hour Max hours
3GB $0.576 53,568
40GB $2.304 13,392

Page 7 of 14

RackSpace instances

RackSpace [25] is a UK based IaaS provider. It offers
only one instance type suitable for the 3GB simulation
runs — see Table 9. Being UK-based could be benefi-
cial if restrictions require that work is performed within
the UK although that was not a constraint in this
case.

Summary

If we were to just take the raw cost for performing the
work on the Cloud into account this would seem to make
a compelling reason for choosing this option, with most
providers managing to undercut the localy purchased
hourly cost. However, if we factor in the ownership of
the resources and the fact that they could be re-used for
future projects the story is not so clear. Given a three year
life-expectancy for a server this would require six months’
worth of use over the three year life for the 3 GB simula-
tion jobs to be more cost-effective on the local resources
than even the best Cloud offering whilst only around 1.15
months of the 40 GB simulations would be required over
this time scale.

The biggest advantage in using the Cloud, however,
comes from the number of hours of compute time which
can be obtained within the one month available, pro-
viding up to 563% more hours for the 3GB simula-
tions and 20% for the 40 GB simulations. When you
factor in the number of simulations that can be pro-
visioned concurrently (40 large (40 GB) simulations on
Amazon EC2 as opposed to 18 large simulations on
local resources) and the time to provision the resources
(within minutes for the Cloud as opposed to the pur-
chasing, delivery, installation, and configuration cycle for
local resources) this makes the Cloud more appealing.
The Cloud hours can be consumed within 16 days as
opposed to the full 31 days for the locally provisioned
resources.

Cloud simulation results

We present here the results from running the City-
Cat computational engine on the Cloud. The simula-
tions were all performed between the 20th November
2011 and the 20th December 2011. All Cloud costs
are based on those in force at that time. For compu-
tation resources these have been presented in Section
‘Amazon EC2 instances, whilst for data transfer ingress
was free and egress was $0.12 per GB. It should be noted
that the cost for using the Cloud changes. In general
the cost for using the Cloud has come down since these
simulations were run which would allow for more work
to be performed. To aid readers, the number of hours
of computation and data egress volumes are presented
allowing the cost to be recomputed based on the current
charging model.

Glenis et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:7

http://www.journalofcloudcomputing.com/content/2/1/7

Table 5 Cost-time analysis for 3GB simulations on EC2

Page 8 of 14

Name Cores Memory Concurrent Unit Cost Hours Cost per simulation hour
Large 4 75 2 $0.34 190,000 $0.17
Extra Large 8 15 4 $0.68 190,000 $0.17
High Memory XL 6.5 17.1 5 $0.50 323,000 $0.10
Double XL 13 342 1 $1.00 355,300 $0.091
Quad XL 26 68.4 22 $2.00 355,300 $0.091
High CPU XL 20 7 2 $0.68 95,000 $0.34
Cluster Compute 335 23 7 $1.60 141,312 $0.229

Newcastle city centre - simulation set 1

For these simulations an estimated runtime of 30 minutes
to one hour was predicted. Four large Cloud instances
were used (m1.large on Amazon), each with 7GB of RAM
and four compute units. Although each resource was
capable of running two CityCat simulations concurrently
only one was run per Cloud instance. As the problem size
was relatively small it was decided to run this as a param-
eter sweep using fewer resources than the number of
simulation runs. Thus HTCondor was used to perform job
coordination. Figure 3 shows the execution timelines of
the 36 simulations where each horizontal line represents
the execution of a single simulation on Cloud comput-
ers C1 to C4. All Cloud computers were started between
08:50 and 09:30 and terminated by C1 — 06:30, C2 — 06:00
and C3 - 07:00 the following morning. Note that Com-
puter C4 was terminated manually at 18:20 to determine
if the system could cope with such a loss. This repre-
sents some 76 hours of Cloud chargeable time at a total of
$25.84 — large instances were $0.34 per hour in December
2011.

The total amount of simulation run-time for this was 29
hours and 21 minutes, giving an effective charge of $0.88
per hour of simulation. It should be noted that this does
not take into account the time for transferring data files to
and from the Cloud instances.

Data ingress to the Cloud was free whilst egress was
charged at $0.12 per GB over the first GB. As the com-
pressed data egress was 11GB this incurred a charge of
$1.20 for data transfer.

Newcastle city centre — simulation set 2

Figure 4 shows the execution timelines for the Newcastle
City Centre simulations — simulation set 2. The Amazon
Quad XL instances used for this simulation set were

Table 6 Cost-time analysis for 40GB simulations on EC2

capable of running six simulations per instance, requir-
ing a total of six instances. Simulations were allocated to
instances in order — hence simulations 1 to 6 were run on
instance 1. Note that simulation 36 was started manually
later as there was a bug in the original code which failed
to launch it.

The total simulation time for all 36 runs was 4,589 hours
and four minutes. However, due to the order in which sim-
ulations were allocated to instances the longest of each
set of six jobs kept the instance alive even though the
other simulations had finished. Thus the number of Cloud
instance hours was 2,361 costing a total of $4,722. This
equates to a real simulation cost per hour of $1.03. If jobs
had been grouped by expected execution time then this
could have brought the execution time down substantially.
Manually re-ordering the jobs would bring the number of
cloud hours down to 906 and the cost per simulation hour
down to $0.395.

Data egress for this simulation set was 10GB resulting in
a charge of $1.08. Note that all simulation sets apart from
set 1 required downloading of their data during Decem-
ber. The one free GB of data transfer has been arbitrarily
discounted from this set.

Newcastle city centre - simulation set 3

These simulations each required 40GB of RAM and were
run individually on Amazon Quad XL instances. Figure 5
shows the timelines for these simulation executions. Note
that only simulations 1 to 4 of each set of six were executed
as it was decided that the runtime for simulations 5 and 6
would take us beyond our month deadline. The red time-
lines indicate those simulations which failed to complete
before the month deadline was reached. These simula-
tions were manually terminated, although the results up
till the point of termination are still valid.

Name Cores Memory Concurrent

Unit cost Hours Cost per simulation hour

Quad XL 26 68.4 1

$2.00 16,150 $2.00

Glenis et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:7

http://www.journalofcloudcomputing.com/content/2/1/7

Table 7 Cost-time analysis for 3GB simulations on Azure

Page9of 14

Name Cores Memory Concurrent Unit cost Hours Cost per simulation hour
Medium 2 35 1 $0.24 134,583 $0.24
Large 4 7 2 5048 134,583 $0.24
Extra Large 8 14 4 $0.96 134,583 $0.24

The simulations consumed a total of 6,856 hours and
50 minutes. However, with an average of three minutes
to deploy the instance and decompress the files, along
with an average of 30 minutes to compress the data
and upload it to Cloud storage this brings the number
of Cloud chargeable hours up to 6,929, costing $13,858.
This equates to a real simulation cost per hour of $2.02.
Thus the overhead for running this work on the Cloud is
marginal. A total of 18GB of data egress was required for
this simulation set at a cost of $2.16.

Newcastle city centre - simulation set 4

This single simulation was run on an Amazon High Mem-
ory XL instance taking 33 hours and 54 minutes. This
consumed 35 hours of Cloud time at a cost of $17.50. The
data transfer for this single job was just 195M — less than
$0.12. This single run produced a cost per simulation hour
of $0.51. However, an extra simulation of the 36 rain pat-
tern from set 6 was also run on this computer, thus giving
greater utilisation of the hardware.

Whole Newcastle city council area - simulation set 5

These simulations each required 20GB of RAM allow-
ing three simulations per Amazon Quad XL instance.
Figure 6 depicts the timelines for these simulations. Note
that the blue timelines indicate runs which were restarted
due to an error in the system. The total simulation time
is 3,623 hours and 21 minutes. With additional time for
Cloud initiation, file decompression, file re-compression
and file transfer this brings the number of Cloud charge-
able hours up to 2,212 costing $4,424, thus giving a
real simulation cost per hour of $1.22. This value is
roughly twice the expected value due to the late start-
ing of some of the jobs and the arbitrary ordering of
jobs. Re-ordering of these jobs could have brought the
number of Cloud hours down to 1,413 ($2,826) and a
simulation hour cost of $0.780. A total of 12GB of data
egress was required for this simulation set at a cost
of $1.44.

Table 8 Cost-time analysis for 3GB simulations on GoGrid

Thames estuary - simulation set 6

Only two 13GB simulations were run for this case, those
for simulations 24 and 36. These simulations took a total
of 322 hours and 42 minutes. This was achieved through
a total of 162 chargeable Cloud hours totalling $324. This
gives a real simulation cost per hour of $1.006 — very close
to optimal. Data transfer of 4GB added an additional cost
of $0.48.

Preliminary result of the CityCat simulations

We present preliminary results for two of the simulations
presented in Section ‘Scientific Experimental Environ-
ment. The use of Cloud computing in performing these
simulations has generated a large amount of output which
now requires significant effort to process.

Newcastle city council area - simulation 5

The whole area of Newcastle City Council which covers
approximately 120 km?, depicted in Figure 7, was used
to demonstrate that by using Cloud Computing and City-
Cat, organisations would be able to model areas of such
scale for Surface Water Management Planning. Running
the model at such a scale (cell count) allows more accu-
rate predictions to be made. In urban catchments, water
pathways are quite complex because they are influenced
by the topography and man-made features. The conven-
tional approach of detailed modelling of small domains
is dangerous, however, because delineation of catchments
can be difficult in complex and dynamic situations. Larger
domains are therefore required to ensure inclusion of
upstream sources which may not be obvious a priori.

Thames estuary - simulation 6

The largest domain we simulated was the Thames estu-
ary with an area of approximately 1,100 km?. In order to
keep the cell count within bounds we used a cell size of
15 m — resulting in five million cells. The propagation of
the tidal surge upstream along the Thames was modelled
to see if CityCat could also be used in coastal and fluvial

Name Cores Memory Concurrent Unit cost Hours Cost per simulation hour
Server 4/4/200 4 4 1 $0.76 42,500 $0.76
Server 8/8/400 8 8 2 $1.52 42,500 $0.76
Server 16/16/800 16 16 5 $3.04 53,125 $0.608

Glenis et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:7

http://www.journalofcloudcomputing.com/content/2/1/7

Table 9 Cost-time analysis for 3GB simulations on RackSpace

Page 10 of 14

Name Cores Memory Concurrent

Unit cost Hours Cost per simulation hour

4096/160 1 4 1

$0.252 128,174 $0.252

flood risk studies. The boundary condition for this simu-
lation was the tidal water level given as a function of time
and placed at the east boundary of the domain. Figures 8
and 9 illustrate the Thames tidal surge at 27 and 31 hours
after onset. The use of high-end Cloud instances allows us
to model the effects of a tidal surge at an unprecedented
level of detail and scale. This development could have sig-
nificant impact on modelling of such phenomena around
the world in the future.

Non-functional issues with Cloud deployment

Local alternatives

As discussed in the section ‘Cost-time analysis for the
CityCat simulations’ the main benefits of using the Cloud
come more from the rapid provisioning of resources
to meet immediate deadlines rather than the cost-
effectiveness of resources, especially over the whole life-
time of a resource. Large organisations, such as univer-
sities, are constantly looking at the long term benefit of
the purchases they make. Hence, given the scenario where
money is to be spent on a short-term benefit of Cloud
computing as opposed to purchasing of local resources
which could be used by others over a longer period of time
the university naturally favours the latter.

However, given a situation where strict deadlines pre-
vent the purchasing of enough resources in a timely
enough manner to meet requirements, this long-term
view can often be too restrictive. A careful balance needs

Cal bt -
c3t]]] i L]]
C2f] L]] []] L]
C1l} L] Lo L] L]] []
.00 .1:00.1:00 .00 . 1:00 .1:00 . :00 .1:00 . -00 :00 -0 . -00 .00
0%..00 -101()0 -\:L..()O bY 500 16‘-00 1%.'00 ;LOV_QO »_LT_QQ 20 .00 -07_..00 Y %00 '06'-00 '96'-00 g
Time
Figure 3 Simulation run times for Newcastle city centre
(simulation 1). Time profile for the one million cell simulation of
Newcastle City Centre at 2m by 2m resolution — simulation set 1.

to be drawn between short-term benefits and long-term
goals. In an ideal environment all would favour the long-
term goals and contribute their resources to a global pool
allowing others to obtain their short-term requirements
from this. However, if people instead favour the short-
term benefits then none can benefit from the global pool.
Persuading management that a short-term benefit is more
important can often be a challenge and requires manage-
ment to fully appreciate the need for rapid turn-around.

Credit cards

The (apparent) democratic process for access to Cloud
resources is achieved by a credit card purchasing model.
It is assumed that anyone in a position to purchase time
on the cloud will be in possession of a credit card and
that this is the Cloud providers’ only requirement for any
user. Although this simplifies the process — if you have
money (or credit) then you can use the resources — it has
knock-on effects when purchasing significant amounts of
computational time on the Cloud. A credit limit of say
$10,000 is easy enough to obtain, though a limit of $32,500
which was needed for this project was much harder to
obtain.

This problem was compounded by the fact that many
large institutional organisations, including Newecastle
University, have tight regulations on credit card spends.
These include not only low credit limits but also maxi-
mum values for individual purchases. Also as the exact
cost of using the Cloud could not be determined a priori it
was difficult to convince the finance department that this
purchase was not going to spiral out of control.

Eventually a compromise was reached in which a lower
credit limit could be used by splitting the Cloud usage over
two billing periods along with tight monitoring of monies
spent.

Conclusions

Cloud computing has enabled higher resolution larger
scale modelling of pluvial flooding on a much larger scale
than usually performed. Additionally, the use of the Cloud
has provided access to enough resources to allow simulta-
neous simulations of different rainfall events required in
studies of flood risk.

Results of the city-wide pluvial flood risk simulations
for Newcastle upon Tyne obtained using Cloud comput-
ing show excellent correlation with the flooding observed
during the recent pluvial flood event in Newcastle. On
28th June 2012, over a period of two hours, 45 mm of
rain fell over the whole city. A more detailed verification

Glenis et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:7

http://www.journalofcloudcomputing.com/content/2/1/7

Page 11 of 14

R RINININININ NN NN W WWIWLI

T

at 1 mby 1 m resolution — simulation set 2.

Nov 27 20}\\10\1 30 201Dlec 03 2()})lec 06 201\)1ec 09 201Dlec 12 2O%jlec 15201}

Time

Figure 4 Simulation run times for Newcastle city centre (simulation 2). Time profile for the four million cell simulation of Newcastle City Centre

study, which is currently being undertaken using crowed
sourced images of the flooding over the whole Tyne urban
area, will show the full potential for using Cloud comput-
ing in urban flood risk management and will be reported
elsewhere.

The city-wide application demonstrated here can be
replicated for other cities in the United Kingdom using

readily available data sets from the Ordnance Survey
(MasterMap building information) and airborne lidar
available from various providers. Similar data are avail-
able in many parts of the world and there is considerable
demand for such detailed urban flood risk assessments in
the insurance industry, government authorities and other
hazard management and civil protection agencies.

I

1 1 1 11 4 201
pec 02 \%QC‘M 20146 201 he 3210 2%¢

pec Y° Hec ec

12 30 300 g0 e g0 b0 20
Time

Figure 5 Simulation run times for Newcastle city centre (simulation 3). Time profile for the 16,000,000 cell simulation of Newcastle City Centre

at 0.5 m by 0.5 m resolution — simulation set 3.

Glenis et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:7 Page 12 of 14
http://www.journalofcloudcomputing.com/content/2/1/7

1]

= NINININININ NN NN WWLWIWWIWW

N WAUIO~N00OOHN WA UION0WOWOHN WA UION00WOO =N WA UIOY

I

Nov 26 20‘\}3\/ 28 20‘\}(}\/ 30 20019}c 02 2°D%c 04 7'()Dlelc 06 206e16 08 7'0\)%c 102011
Time
Figure 6 Simulation run times for whole Newcastle city council area (simulation 5). Time profile for the 7,500,000 cell simulation of Newcastle
City Centre at 4 m by 4 m resolution — simulation set 5.

water depth (m)
B o005
[oo0s-02
[Jo2-05
B os5-1
B -
B 525

L L L L L
0 1 2 4 Kilometers

Figure 7 Water depth. Depth of water over the whole Newcastle city council area at the end of a rainfall event with duration of 1 hour and return
period of 100 years.

Glenis et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:7

http://www.journalofcloudcomputing.com/content/2/1/7

Page 13 of 14

Water depth (m) - 27hrs

- High : 6.381

B w0

Figure 8 Thames estuary at 27 hours. Flooding of Thames estuary due to the 1000-year return period tidal wave after 27 hours.

1
30 Kilometers

These simulations produced a huge amount of detailed
results which, in order to become meaningful to end
users, need to be combined and presented in the form
of maps and video animations. The automatic visual-
isation and analysis of flood risk was lost when the
numerical engine and the GUI of “CityCat” were sepa-
rated in order to be deployed on the Cloud for parameter
sweeps. Therefore, a potential area for further develop-
ment is automatic creation of flood risk maps and ani-
mations based on the CityCat results generated on the
Cloud.

Although this work does not present a motivational
case for using the Cloud based on financial concerns it
does support the notion that Cloud computing can pro-
vide rapid access to computational resources as and when
needed without the need for significant financial outlay
and continued expenses for maintaining the resources.
This can be of particular benefit to organisations for
whom performing such computational work is an infre-
quent process.

Significant care needs to be taken to ensure high util-
isation of Cloud resources to ensure that they are cost-
effective. This is no different to the utilisation issues
for existing HPC facilities. As each individually ‘rented’
resource is now charged for independently this can

quickly lower the utilisation and hence increase the cost
per simulation hour. Adaptation of the Cloud deployment
tool to take into account the expected execution time of
the different runs could help alleviate much of this prob-
lem. However, the additional costs for using the Cloud —
data transfer and (de)compression — are relatively small in
these cases and have little impact on the overall cost of
using the Cloud.

The adaptation of an application to run as a parameter
sweep is often a non-trivial task — as in this case. How-
ever, this process only needs to be performed once and
would still have been needed if the application were to
have been run on locally provisioned resources. The ben-
efits of adaptation of the code are easily apparent — the
ability to run parameter sweeps of simulations concur-
rently and the ability to script multiple scenarios quickly.
This is an example of where closer inter-relationships
between those experienced in using parameter sweep exe-
cutions and the Cloud and those who are experts in the
science is essential to ensure the transfer of appropri-
ate skills. Although this process consumed a significant
amount of effort, the ability to process more than 15,450
hours (~21 months) of simulation time within one cal-
endar month is significant and can be re-used easily in
the future.

Water depth (m) - 31hrs

- High : 6,381

B Low:o

Figure 9 Thames estuary at 31 hours. Flooding of Thames estuary due to the 1000-year return period tidal wave after 31 hours.

Glenis et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:7

http://www.journalofcloudcomputing.com/content/2/1/7

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

VG decomposed the CityCat execution engine from the GUI and produced
the simulation run requirements. ASM and SW proposed and developed the
architecture for performing parameter sweep applications on the Cloud and
conducted the simulation runs on the Cloud. VK, VG and CK drafted the
Abstract; Background (Flood Risk Assessment using CityCat); Parameter sweep
enabling the CityCat application; Scientific Experimental Environment;
Preliminary result of the CityCat simulations and parts of the Conclusions. ASM
drafted the Introduction; Cloud for computationally intense applications;
Cloud execution architecture; Cost-time analysis for the CityCat simulations;
Cloud simulation results and Non-functional Issues with Cloud deployment.
ASM and SW drafted parts of the Conclusions. All authors read and approved
the final manuscript.

Acknowledgements

The authors are grateful to the EPSRC/JISC grant EP/1034351/1 which allowed
this work to be conducted. The authors are grateful to the reviewers for their
constructive comments.

Author details

'School of Civil Engineering and Geosciences, Newcastle University,
Newcastle upon Tyne, UK. 2School of Computing Science, Newcastle
University, Newcastle upon Tyne, UK.

Received: 14 November 2012 Accepted: 5 March 2013
Published: 22 March 2013

References

1. HeyT, Tansley S, Tolle K (Eds) (2009) The Fourth Paradigm. Data-Intensive
Scientific Discovery. Redmond, Washington. Microsoft Research.
http://research.microsoft.com/en-us/collaboration/fourthparadigm/

2. Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G,
Patterson D, Rabkin A, Stoica |, Zaharia M (2010) A view of Cloud
computing. Commun ACM 53(4): 50-58

3. McGough AS, Lee W, Das S (2008) A standards based approach to
enabling legacy applications on the Grid. Future Generation Comput Syst
24(7): 731-743. http://www.sciencedirect.com/science/article/pii/
S0167739X08000095

4. WeiYan T (1992) Shallow water hydrodynamics. Elsevier Oceanography
Series, vol 55. Elsevier, Amsterdam, p 434

5. Toro EF (2001) Shock-capturing methods for free-surface shallow flows.
John Wiley & Sons, Chichester, p 309

6. Toro E (2009) Riemann solvers and numerical methods for fluid dynamics,
third edition. Springer-Verlag, Berlin Heidelberg, p 724

7. Hunter N, Bates P, Neelz S, Pender G, Villanueva |, Wright N, Liang D,
Falconer R, Lin B, Waller S, Crossley A, Mason D (2008) Benchmarking 2D
hydraulic models for urban flooding. In: Proceedings of the ICE - Water
Management, vol 161. pp 13-30. http://centaur.reading.ac.uk/1180/

8. Neal JC, Bates PD, Fewtrell TJ, Hunter NM, Wilson MD, Horritt MS (2009)
Distributed whole city water level measurements from the Carlisle 2005
urban flood event and comparison with hydraulic model simulations.

J Hydrol 368(1-4): 42-55. http://www.sciencedirect.com/science/article/
pii/S002216940900047X

9. Deelman E, Singh G, Livny M, Berriman B, Good J (2008) The cost of doing
science on the Cloud: the Montage example. In: Proceedings of the 2008
ACMV/IEEE conference on Supercomputing, SC ‘08. IEEE Press, Piscataway,
50:1-50:12

10. Amazon Web Services. Elastic Compute Cloud.
http://aws.amazon.com/ec2/

11. Amazon Web Services. Simple Storage Service.
http://aws.amazon.com/s3/

12. de Assuncao MD, di Costanzo A, Buyya R (2009) Evaluating the
cost-benefit of using Cloud computing to extend the capacity of clusters.
In: Proceedings of the 18th ACM international symposium on High
performance distributed computing, HPDC ‘09. ACM, New York,
pp 141-150

13. Mattess M, Vecchiola C, Buyya R (2010) Managing peak loads by leasing
cloud infrastructure services from a spot market. In: Proceedings of the

Page 14 of 14

2010 IEEE 12th International Conference on High Performance
Computing and Communications, HPCC "10. [EEE Computer Society,
Washington, pp 180-188

14. Palankar MR, lamnitchi A, Ripeanu M, Garfinkel S (2008) Amazon S3 for
science grids: a viable solution? In: Proceedings of the 2008 international
workshop on Data-aware distributed computing, DADC '08. ACM,

New York, pp 55-64

15. Evangelinos C, Hill CN (2008) Cloud computing for parallel scientific HPC
applications: Feasibility of running coupled atmosphere-ocean climate
models on Amazon’s EC2. In: Cloud Computing and its applications.
https://my.cloudme.com/seadog5339/webshare/CloudComputing/
Cloud%20Computing/Applications/Cloud%20Computing%20and%20its
%20Applications%20-%202008/Paper34-Chris-Hill.pdf

16. Lu W, Jackson J, Barga R (2010) AzureBlast: a case study of developing
science applications on the Cloud. In: Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing,
HPDC "10. ACM, New York, pp 413-420. http://doi.acm.org/10.1145/
1851476.1851537

17. Litzkow M, Livney M, Mutka MW (1998) Condor-a hunter of idle
workstations. In: 8th International Conference on Distributed Computing
Systems. IEEE Computer Society, Washington, pp 104-111

18. Apache Software Foundation. Deltacloud. http://deltacloud.apache.org/

19. Borland. Delphi. http://www.embarcadero.com/products/delphi

20. The Lazarus Team. Lazarus. http://www.lazarus.freepascal.org/

21. Free Pascal Team. Free Pascal: Free Pascal Compiler. http://www.
freepascal.org/

22. Institute of Hydrology (1999) Flood estimation handbook, vol 3:
Statistical procedures for flood frequency estimation. Institute of
Hydrology, Wallingford, UK

23. Microsoft. Windows Azure Platform, Microsoft Cloud Services.
http://www.microsoft.com/windowsazure/

24. GoGrid. Cloud Hosting. http://www.gogrid.com/

25. RackSpace. Cloud Servers. http://www.rackspace.co.uk/cloud-servers/

doi:10.1186/2192-113X-2-7

Cite this article as: Glenis et al.: Flood modelling for cities using Cloud com-
puting. Journal of Cloud Computing: Advances, Systems and Applications 2013
27.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://www.sciencedirect.com/science/article/pii/S0167739X08000095
http://www.sciencedirect.com/science/article/pii/S0167739X08000095
http://centaur.reading.ac.uk/1180/
http://www.sciencedirect.com/science/article/pii/S002216940900047X
http://www.sciencedirect.com/science/article/pii/S002216940900047X
http://aws.amazon.com/ec2/
http://aws.amazon.com/s3/
https://my.cloudme.com/seadog5339/webshare/CloudComputing/Cloud%20Computing/Applications/Cloud%20Computing%20and%20its%20Applications%20-%202008/Paper34-Chris-Hill.pdf
https://my.cloudme.com/seadog5339/webshare/CloudComputing/Cloud%20Computing/Applications/Cloud%20Computing%20and%20its%20Applications%20-%202008/Paper34-Chris-Hill.pdf
https://my.cloudme.com/seadog5339/webshare/CloudComputing/Cloud%20Computing/Applications/Cloud%20Computing%20and%20its%20Applications%20-%202008/Paper34-Chris-Hill.pdf
http://doi.acm.org/10.1145/1851476.1851537
http://doi.acm.org/10.1145/1851476.1851537
http://deltacloud.apache.org/
http://www.embarcadero.com/products/delphi
http://www.lazarus.freepascal.org/
http://www.freepascal.org/
http://www.freepascal.org/
http://www.microsoft.com/windowsazure/
http://www.gogrid.com/
http://www.rackspace.co.uk/cloud-servers/

	Abstract
	Keywords

	Introduction
	Background and related work
	Flood risk assessment using CityCat
	Cloud for computationally intense applications

	Cloud execution architecture
	Parameter sweep enabling the CityCat application
	Scientific experimental environment

	Cost-time analysis for the CityCat simulations
	Locally provisioned resources
	Amazon EC2 instances
	Microsoft Azure instances
	GoGrid instances
	RackSpace instances
	Summary

	Cloud simulation results
	Newcastle city centre – simulation set 1
	Newcastle city centre – simulation set 2
	Newcastle city centre – simulation set 3
	Newcastle city centre – simulation set 4
	Whole Newcastle city council area – simulation set 5
	Thames estuary – simulation set 6

	Preliminary result of the CityCat simulations
	Newcastle city council area – simulation 5
	Thames estuary – simulation 6

	Non-functional issues with Cloud deployment
	Local alternatives
	Credit cards

	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

