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Abstract

Urban flood risk modelling is a highly topical example of intensive computational processing. Such processing is
increasingly required by a range of organisations including local government, engineering consultancies and the
insurance industry to fulfil statutory requirements and provide professional services. As the demands for this type of

work become more common, then ownership of high-end computational resources is warranted but if use is more
sporadic and with tight deadlines then the use of Cloud computing could provide a cost-effective alternative.
However, uptake of the Cloud by such organisations is often thwarted by the perceived technical barriers to entry. In

this paper we present an architecture that helps to simplify the process of performing parameter sweep work on an
Infrastructure as a Service Cloud. A parameter sweep version of the urban flood modelling, analysis and visualisation
software “CityCat” was developed and deployed to estimate spatial and temporal flood risk at a whole city scale – far

larger than had previously been possible. Performing this work on the Cloud allowed us access to more computing
power than we would have been able to purchase locally for such a short time-frame (∼21 months of processing in a
single calendar month). We go further to illustrate the considerations, both functional and non-functional, which need

to be addressed if such an endeavour is to be successfully achieved.
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Introduction
We are now able to collect vast quantities of data about

the physical world but this has little significance until we

are able to process it, through analysis or simulation, to

extract understanding and meaning. The so called fourth

paradigm [1] of data-intensive discovery often requires

significant computational power. All sectors of society

(commercial, public and academic) have a need to exploit

this new approach.

For large organisations (companies, governments or

large research projects) access to appropriate levels of

computational resources is easily within their reach. How-

ever, for smaller organisations this can often be beyond

their means – especially if the organisation is not expect-

ing to make significant use of the resources. Tradition-

ally these organisations have relied on access to shared

resources managed by others or making do with the

resources available – which may preclude them from
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meeting tight deadlines or require them to make com-

promises in order to achieve these deadlines. These com-

promises may be through reduced complexity models

(simpler or less realistic) or the processing of smaller data

sets than desired.

The problem outlined above is no more prevalent than

in cases where an organisation is required to complete a

task within pre-defined budget and time-limit constraints.

The use of the Cloud [2] offers a potential solution by

allowing the organisation to gain access to vast quan-

tities of computing power almost instantaneously, often

far greater quantities of computing power than the bud-

get would allow them to purchase and use within the

defined time-constraints and without the associated lead-

time required to acquire and install resources. The use of

the Cloud does, however, lead to a situation where after

completion of the task the organisation lacks any collat-

eral which could be used for future tasks. However, if such

task requirements are rare these extra resources would

have little if any value for the organisation. Thus the choice

to use the Cloud or not rests on an analysis of the cost-

time benefits of performing the work on the Cloud as
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opposed to a comparison with upfront purchasing of the

appropriate hardware resource(s).

The Cloud allows scaling of resource to meet current

needs with payment being only for the time that the

organisation ‘rents’ the resources. This allows organisa-

tions access to a wide variety of computational resource

types either not normally available to them or which

would not gain enough utilisation to warrant purchasing.

Many organisations are required to run the same soft-

ware (often developed by themselves or adapted to their

own needs) multiple times with different starting condi-

tions in order to determine characteristics about a prob-

lem space or identify an “optimal” solution. This process,

referred to as parameter sweep, can be performed in par-

allel over a large number of computers and would seem

to match nicely with the Cloud model of (apparently) infi-

nite resources available on demand. If the same software

is required by many different users then the process of

performing the parameter sweep and this software can

be made available to the end user in a Software as a Ser-

vice (SaaS) manner in which the user interacts with the

Cloud through an external interface with all work being

performed for them. However, if the user wishes to run

his/her own software then such a SaaS offering could

be too restrictive. Instead tooling could be provided to

an Infrastructure as a Service (IaaS) simplifying the pro-

cess of performing parameter sweep executions. However,

adding an external user interface to these tools would

allow them to be exposed as a SaaS.

Once a decision is made to run large parameter sweeps

on the Cloud, then the development of a parameter

sweep-ready task is needed. This often requires making

the jobs which make up the task parameter sweep-ready-

removing the need to interact directly with each job thus

allowing many jobs to be invoked quickly, and providing

the correct environment in which to run the job [3]. Tasks

then need to be enacted on the Cloud-provisioning appro-

priate resources on the Cloud, uploading of executables

to the Cloud along with any associated dependencies and

data, the execution of the jobs and finally the staging of

data back to the organisation. This process is clearly non-

trivial to perform and not unique to the Cloud–similar

problems exist in Grid and other distributed computing

environments.

Although the financial barrier to using the Cloud is

(relatively) low, the technical aspect of actually using the

Cloud is still a barrier to entry. Many organisations lack

the technical expertise to deploy work to the Cloud and

make efficient use of it, reducing uptake. Also if digital

technologies are not the core activities of the organisation

neither should we expect them to be proficient in using

Cloud infrastructure.

In this paper we propose a generic architecture which

automates many of the stages in using the Cloud for

parameter sweep based batch-processing type problems,

thus reducing the barrier to entry for organisations. We

exemplify the use of this architecture for an applica-

tion in pluvial flood risk assessment using the CityCat

flood modelling simulation tool to identify areas of high

flood risk during rare-event storms (once every one to

200 years). We further exemplify the cost-time implica-

tions by having a limited budget of £20,000 (∼$32,500)

and a project deadline of one month. Assessing both

the perceived ‘best’ Cloud provider to use a priori

along with an assessment of the performance achieved

from running these simulations. We present preliminary

results for the Pluvial flood modelling before consider-

ing the non-functional issues encountered during this

work.

Background and related work
Flood risk assessment using CityCat

Pluvial flood risk analysis, where intense direct rainfall

overwhelms urban drainage systems, is complex and time-

consuming as it is sensitive to the spatial-temporal charac-

teristics of rainfall, topography of the terrain and surface

flow processes influenced by buildings and other man-

made features. Assessment of urban flood risk is based on

the results of flood models which provide the depth and

velocity of surface water generated by intense rainfall. Sur-

face water flow is well described by the two dimensional,

depth averaged, hydrodynamic shallow water equations

which are partial differential equations of time depen-

dent conservation of mass and momentum [4]. These

equations can only be solved using a numerical method

which requires discretisation of the domain into small

cells and discretisation of the period of simulation into

small time steps.

The method of finite volumes with higher order accu-

rate shock capturing schemes provides the most accurate

solution for propagation of flood wave over initially dry

surfaces and for flows with discontinuities [5]. However,

it requires significant computation at each cell at each

time step. Additionally, in order to ensure stability of

the numerical solution, adaptive time steps based on the

Courant-Friedrichs-Lewy (CFL) condition are used [6].

This results in variable time steps ranging from 0.01 s to

10 s due to the size of the cells and the changeable flow

conditions. Smaller time steps increase the execution time

of the simulation. Therefore accurate and stable solutions

require the modelling of large domains at high resolution.

This leads to high memory requirements (∼40GB) and

execution times (∼weeks). However, a meaningful flood

risk assessment requires modelling of multiple rainfall

events, covering different durations and probabilities of

occurrence. This increases significantly the computational

requirements and it becomes exacerbated when future

climate scenarios are considered.
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Due to these computational complexities the assess-

ment of pluvial flood risk is usually carried out at relatively

small scales using a restricted number of design storms

[7]. Alternatively, for large city-scale assessments, simpli-

fied models are used [8]. The use of fully detailed numeri-

cal models for larger areas is in its infancy for two reasons.

Firstly, most of the models in this field are compiled as

32-bit applications and this limits the addressable mem-

ory and constrains the size of the computational domain.

Secondly, detailed modelling of larger areas results in

high computational requirements which are best resolved

using High Performance Computing (HPC) or cluster

based facilities. However, such facilities might not be

easily accessible to water consulting and engineering com-

panies and local authorities that have to carry out flood

risk assessment studies.

Cloud for computationally intense applications

Using the Cloud for computationally intense tasks has

been seen in recent years as a convenient way to pro-

cess data quickly. Deelman [9] evaluated the cost of

using Amazon’s Elastic Compute Cloud (EC2) [10] and

Amazon’s Simple Storage Service (S3) [11] to service

the requirements of a single scientific application. Here

we add the constraints of memory dominant executions

under fixed time limits.

De Assuncao [12] proposed the use of Cloud computing

to extend existing clusters to deal with unexpectedly high

load – greater than that which can be handled locally. This

work was further extended by Mattess [13] by proposing

the use of Amazon spot instances, supply-and-demand

driven pricing of instances, to further reduce the cost of

Cloud Bursting. Our approach differs to these in that we

seek to optimise the execution of a single set of simula-

tions rather than the general capacity of an organisation.

However, we see that the use of spot instances could be a

mechanism to increase the number of hours available for

a given budget.

Palankar [14] showed the criticality of data locality in

the Cloud. In our work we take into account the effects

of uploading and downloading data from the Cloud by

making use of Cloud storage facilities such as S3. This

minimises external data transfers and allows instances to

terminate sooner.

Evangelinos [15] evaluated the use of Cloud resources

for running High Performance Computing applications,

showing a decrease in performance in comparison with

dedicated supercomputing facilities andmore akin to low-

cost clusters. However, as our application is processing

parameter sweeps of jobs in a batch-processing manner

(often referred to as High Throughput Computing) we do

not expect to see the same degradation in performance.

Lu [16] presents an application for processing gene

sequences on the Cloud. Although this work is similar, in

batch-processing, to our own we present a more generic

architecture.

Cloud execution architecture
Staff inmany organisations do not possess the skills to per-

form parameter sweep executions on the Cloud – starting

up Cloud instances, deploying andmanaging jobs on these

instances along with transferring data to and from the

Cloud. Nor should they be expected to perform such

tasks-especially if their need to use the Cloud is intermit-

tent and not part of their main function. In this section

we present an architecture which abstracts the user away

from the complexities of using the Cloud to perform

parameter sweep executions presenting them instead with

a command line interface that captures the information

required to run these executions on the Cloud.

Figure 1 shows the architecture for our system which

interacts with an Infrastructure as a Service Cloud offer-

ing. The user interacts with the system through the user

interface – currently this is a command line interface

though this could easily be replaced by a GUI or web por-

tal. The user interface sends information to the Cloud

Enactor which is responsible for deploying new cloud

instances when required and terminating those that are no

longer required. The Cloud enactor is also responsible for

simple task deployment to the Cloud (starting a task off

on a Cloud instance) along with monitoring these running

tasks. We exploit the load-balancing facilities of existing

batch queuing technologies such as HTCondor [17] in

the situation where the number of Cloud instances is less

than the number of parameter sweep jobs we wish to per-

form. DeltaCloud [18] is used to abstract us away from the

underlying Cloud infrastructure allowing our architecture

to run over multiple Clouds.

The user interface collects information about the max-

imum number of instances to use and the location of a

compressed file containing the executable (or script to

run) including any settings, dependencies or data required

by the executable [3], other compressed files (which are

assumed to be further data used by the executable), the

number of runs which are to be processed, along with the

name of the executable.

The first compressed archive is inspected to see if

the named executable appears within the root direc-

tory of the archive. In such cases it is assumed that

the particular parameter sweep task is enacted by the

cloud enactor passing an index value when invoking the

executable. Otherwise it is assumed that there will be

n sub-directories within the archive each containing a

copy of the executable. Where n is the number of runs

to perform. It should be noted that these directories

need not contain the actual executable but may con-

tain a script that calls a single executable stored in a

different location.
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Figure 1 Architecture for Cloud parameter sweep. Outline architecture for Cloud parameter sweep system.

Cloud interaction is handled through the Cloud enactor

module. The archives are first uploaded to the Cloud data

store (such as Amazon S3 [11]) before Cloud instances

are deployed. Once deployed the Cloud enactor gives

each instance the locations of the archive(s) in Cloud

storage. The instance can then download and decom-

press these before executing them. The system provides

two execution models. If the maximum number of Cloud

instances is smaller than the number of parameter sweep

jobs then the tasks will be deployed through a HTCon-

dor [17] cluster, provisioned by the Cloud enactor, formed

from the deployed instances. We use HTCondor here

as our own deployment mechanism does not support

load-balancing of work across resources. However, if the

number of Cloud instances matches the parameter sweep

count then the jobs will just be deployed on the Cloud

instances. This removes the overheads of deploying and

using HTCondor on the Cloud just to execute a single job

per instance.

Once a task has completed then the files which remain

will be compressed before uploading to the Cloud stor-

age. Due to data transfer costs the application developer

is encouraged to delete any superfluous files as part of

his/her executable (or script) before the job terminates.

Once all tasks are completed on a given instance

then the instance will be terminated. All result data are

uploaded to the user’s own storage space on the Cloud for

later retrieval through the (command line) interface.

Parameter sweep enabling the CityCat application
“CityCat” is an urban flood modelling, analysis and visu-

alisation tool. It is based on the solution of the shallow

water equations using the method of finite volume with

shock-capturing schemes. Originally, CityCat was devel-

oped and compiled as a 32-bit application using Borland

Delphi [19], under theWindows operating system with an

integrated Graphical User Interface (GUI) for data prepa-

ration and visualisation of results. Figure 2 shows the

Figure 2 User interface of the original CityCat application. The Graphical User Interface for the Original CityCat application.
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original GUI. Note that, as well as dividing the landscape

up into a regular grid of cells, buildings are ‘stamped’

out of this grid. However, this configuration of CityCat

is not easily usable in a parameter sweep consisting of

many invocations as it requires the interaction of the user

through the GUI in each invocation. In order to over-

come this limitation a new version was developed by

separating the computational engine from the GUI. The

computational engine can be controlled through the use of

configuration scripts which contain the initial parameters

and the input/output file names.

The maximum addressable memory of 4GB for the

32-bit CityCat application limited the number of compu-

tational cells to less than one million. To overcome this

limitation a 64-bit version of the application was devel-

oped and this enabled simulations of much larger domains

using the high memory instances on the Cloud.

Deployment of a Windows application on the Cloud

requires the installation of theWindows OS at each Cloud

instance and this incurs additional costs. In order to avoid

unnecessary expenditure and allow for 64-bit compila-

tion (increasing the size of models that could be run),

the model was ported and compiled under Linux using

the Lazarus Linux IDE [20] and the Free Pascal compiler

[21]. This had an impact on the performance of the code,

increasing the execution time by approximately 10% –

assumed to be a consequence of moving from 32-bit to 64-

bit code and the Free Pascal compiler not optimising the

code as well as the Delphi compiler. However, as the sav-

ing in cost for using Linux based instances was at least 20%

this increase in execution time was considered acceptable

as it was felt that the increase in the number of instances

which could be run offset the increased execution time.

Scientific experimental environment

We have been able to apply the computational engine

of CityCat to much larger domains and for more exten-

sive event durations (through the ability to run multiple

long-running simulations on the Cloud). Three different

domains, ranging in size from one million to 16 million

cells were tested, much larger than the domains used in

current engineering practice – normally of the order of

5,000 to 50,000 cells. Additionally, for one of the domains,

four different grid sizes were used which resulted in very

different model sizes. Table 1 shows the different areas

used within this work. All of the pluvial floodmodels were

then run using a set of 36 rainfall events, containing a

combination of six different return periods and six dif-

ferent storm durations. See Table 2 for the storm details.

Rainfall events were generated following the standard

FEH procedure [22]. All these simulations required differ-

ent memory and computational effort leading to differing

run times. Table 3 presents the system requirements, in

terms of memory, for these simulations. Note that the

index for these simulations (column 1) matches with the

index (column 1) of Table 1.

Cost-time analysis for the CityCat simulations
Here we investigate the cost-time analysis of using

different Cloud options along with the relative cost

for performing the same work on locally provisioned

resources. The CityCat application is a single threaded

simulation model which is memory dominant – we

use the memory requirements which were presented in

Table 3.

As it is not possible to tell a priori the exact amount

of time that these simulations will take to perform we

instead define two metrics by which to compare the cost

of using each offering: cost per simulation hour and max-

imum number of hours available within a single month.

The cost per simulation hour for Cloud offerings is com-

puted as p/c where p is defined as the unit cost per hour,

for the Cloud instance, and c is the number of concurrent

runs of CityCat that the instance can handle without each

run affecting the others. For locally provisioned resources

we can define the cost per unit hour as p = E/M, where E

is the cost of purchasing the resource and M is the num-

ber of hours during which the work we are conducting

must be completed – in our case one month. We appreci-

ate that this artificially gives higher values for purchasing

resources locally and hence do not use this as justifica-

tion for using Cloud resources over local resources, only

including it here for comparison.

Although (in theory) the number of Cloud hours avail-

able per month is infinite there are practical limitations on

this, cost and vendor capping being the most significant.

Each vendor provides a capping limit on the maximum

number of instances which can be running concurrently –

Amazon for example limits this to 20 per region – though

this limit can be overcome through prior arrangement

with the vendor. We therefore provide a figure for the

number of hours available as c× i×h, where c is the num-

ber of concurrent runs of CityCat on the resource, i is the

number of resources that can be run (the lower of 36 or

the maximum number of resources which keeps us within

budget) and h is the number of hours per month. The

same equation is used for locally provisioned resources

with i limited to the number of resources which can be

purchased.

Note that a selection of Cloud providers have been eval-

uated here, though not all. All evaluations were conducted

in November 2011. Note that although each offering will

exhibit different run-times – a consequence of variations

in processor speed and memory bandwidth – these con-

siderations are not being taken into account here as we

expect these to be marginal. We present below only the

cost-time analysis for the small data problem (simulation

sets 1 and 4) – i.e. 3GBmemory requirement, and the very
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Table 1 The different areas and scales used for the simulations

Domain Area Cell Boundary Event Number

size conditions duration of runs

1 Newcastle 4 km2 2 m Rainfall See rainfall 36

city centre events 1-36 events

2 Newcastle 4 km2 1 m Rainfall See rainfall 36

city centre events 1-36 events

3 Newcastle 4 km2 0.5 m Rainfall See rainfall 36

city centre events 1-36 events

4 Newcastle 4 km2 2 m Hypothetical 2 hrs 1

city centre flood wave

5 Whole Newcastle 120 km2 4 m Rainfall See rainfall 36

City Council area events 1-36 events

6 Thames ∼1100 km2 15 m Tidal surge 33 hrs 2

estuary water level and 21 hrs

large data problem (simulation set 3) – 40GB memory

requirement.

Locally provisioned resources

A large server machine purchased by the School of Com-

puting in November 2011 cost ∼ £3,182 (∼$5,142), this

had 12 CPUs and 128GB RAM. Table 4 shows the cost-

time analysis for this resource. Given our initial budget we

could have purchased six such servers. Note that the cost

of installing managing and energy for these servers is not

factored in here. We assume that the remaining money

would cover these costs. We also do not factor in the time

for delivery and commissioning of such systems – which

would often take longer than our one month deadline –

and appreciate that this cannot be fairly compared with

the Cloud. Hence, we do not use this as a justification for

or against the use of the Cloud, rather just a compari-

son of the cost for performing work on locally provisioned

resources.

Amazon EC2 instances

Amazon Elastic Cloud Compute (EC2) [10] offers com-

putational power as an Infrastructure as a Service (IaaS).

Amazon has a large range of computational offerings.

Table 5 shows the cost-time analysis for EC2 for the 3GB

simulation runs and Table 6 for the 40GB simulation

runs. Note that in all cases only resource types capable of

running the simulation are provided. Also note that the

number of concurrent instances of the software is com-

puted from the number of concurrent runs which can fit

Table 2 Frequency and duration of the different rainfall events

Rainfall
event

Return period
years

Duration
mins

Rainfall
event

Return period
years

Duration
mins

Rainfall
event

Return period
years

Duration
mins

1 2 15 13 20 15 25 100 15

2 2 30 14 20 30 26 100 30

3 2 60 15 20 60 27 100 60

4 2 120 16 20 120 28 100 120

5 2 180 17 20 180 29 100 180

6 2 360 18 20 360 30 100 360

7 10 15 19 50 15 31 200 15

8 10 30 20 50 30 32 200 30

9 10 60 21 50 60 33 200 60

10 10 120 22 50 120 34 200 120

11 10 180 23 50 180 35 200 180

12 10 360 24 50 360 36 200 360
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Table 3 Computational requirements (size andmemory)

for the six simulation areas

Number of cells Cell size Required memory

1 1,000,000 2 m 3 GB

2 4,000,000 1 m 11 GB

3 16,000,000 0.5 m 40 GB

4 1,000,000 2 m 3 GB

5 7,500,000 4 m 20 GB

6 ∼5,000,000 15 m 13 GB

into memory at the same time. As the code was unable

to exploit more than one core the processor load was not

considered.

In the case for the small simulation runs (3 GB) the

Quad XL and Double XL instances show the best cost-

time values. Thus going for the larger instances and

running multiple simulations concurrently would appear

to give better cost-time performance. Only one resource

type is capable of running the large (40 GB) jobs–Quad

XL.

Microsoft Azure instances

Microsoft Azure [23] offers a Platform as a Service (PaaS)

option on which users are given amodifiedWindows 2008

server instance. At the time of analysis Azure was unable

to offer instances capable of running the 40GB simula-

tion. Table 7 shows the cost-time analysis for the Azure

instance types running the 3 GB jobs.

Azure provides a very level offering in which the simula-

tion cost per hour is the same for all instance types along

with the number of hours which could be used within a

month.

GoGrid instances

GoGrid [24] offers IaaS instances in which each offer-

ing is effectively double, in core count, memory and disk

space, the previous instance. GoGrid had instance types

which support the 3 GB simulation jobs and the cost-time

analysis is presented in Table 8.

GoGrid provides a slight advantage for their largest

instance type (16/16/800) though this is more due to the

ability to pack simulations more efficiently into memory

than due to their costing model.

Table 4 Cost-time analysis for locally provisioned

resources

Simulation memory Cost per simulation hour Max hours

3GB $0.576 53,568

40GB $2.304 13,392

RackSpace instances

RackSpace [25] is a UK based IaaS provider. It offers

only one instance type suitable for the 3GB simulation

runs – see Table 9. Being UK-based could be benefi-

cial if restrictions require that work is performed within

the UK although that was not a constraint in this

case.

Summary

If we were to just take the raw cost for performing the

work on the Cloud into account this would seem to make

a compelling reason for choosing this option, with most

providers managing to undercut the localy purchased

hourly cost. However, if we factor in the ownership of

the resources and the fact that they could be re-used for

future projects the story is not so clear. Given a three year

life-expectancy for a server this would require six months’

worth of use over the three year life for the 3 GB simula-

tion jobs to be more cost-effective on the local resources

than even the best Cloud offering whilst only around 1.15

months of the 40 GB simulations would be required over

this time scale.

The biggest advantage in using the Cloud, however,

comes from the number of hours of compute time which

can be obtained within the one month available, pro-

viding up to 563% more hours for the 3GB simula-

tions and 20% for the 40 GB simulations. When you

factor in the number of simulations that can be pro-

visioned concurrently (40 large (40 GB) simulations on

Amazon EC2 as opposed to 18 large simulations on

local resources) and the time to provision the resources

(within minutes for the Cloud as opposed to the pur-

chasing, delivery, installation, and configuration cycle for

local resources) this makes the Cloud more appealing.

The Cloud hours can be consumed within 16 days as

opposed to the full 31 days for the locally provisioned

resources.

Cloud simulation results
We present here the results from running the City-

Cat computational engine on the Cloud. The simula-

tions were all performed between the 20th November

2011 and the 20th December 2011. All Cloud costs

are based on those in force at that time. For compu-

tation resources these have been presented in Section

‘Amazon EC2 instances’, whilst for data transfer ingress

was free and egress was $0.12 per GB. It should be noted

that the cost for using the Cloud changes. In general

the cost for using the Cloud has come down since these

simulations were run which would allow for more work

to be performed. To aid readers, the number of hours

of computation and data egress volumes are presented

allowing the cost to be recomputed based on the current

charging model.
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Table 5 Cost-time analysis for 3GB simulations on EC2

Name Cores Memory Concurrent Unit Cost Hours Cost per simulation hour

Large 4 7.5 2 $0.34 190,000 $0.17

Extra Large 8 15 4 $0.68 190,000 $0.17

High Memory XL 6.5 17.1 5 $0.50 323,000 $0.10

Double XL 13 34.2 11 $1.00 355,300 $0.091

Quad XL 26 68.4 22 $2.00 355,300 $0.091

High CPU XL 20 7 2 $0.68 95,000 $0.34

Cluster Compute 33.5 23 7 $1.60 141,312 $0.229

Newcastle city centre – simulation set 1

For these simulations an estimated runtime of 30 minutes

to one hour was predicted. Four large Cloud instances

were used (m1.large on Amazon), each with 7GB of RAM

and four compute units. Although each resource was

capable of running two CityCat simulations concurrently

only one was run per Cloud instance. As the problem size

was relatively small it was decided to run this as a param-

eter sweep using fewer resources than the number of

simulation runs. Thus HTCondor was used to perform job

coordination. Figure 3 shows the execution timelines of

the 36 simulations where each horizontal line represents

the execution of a single simulation on Cloud comput-

ers C1 to C4. All Cloud computers were started between

08:50 and 09:30 and terminated by C1 – 06:30, C2 – 06:00

and C3 – 07:00 the following morning. Note that Com-

puter C4 was terminated manually at 18:20 to determine

if the system could cope with such a loss. This repre-

sents some 76 hours of Cloud chargeable time at a total of

$25.84 – large instances were $0.34 per hour in December

2011.

The total amount of simulation run-time for this was 29

hours and 21 minutes, giving an effective charge of $0.88

per hour of simulation. It should be noted that this does

not take into account the time for transferring data files to

and from the Cloud instances.

Data ingress to the Cloud was free whilst egress was

charged at $0.12 per GB over the first GB. As the com-

pressed data egress was 11GB this incurred a charge of

$1.20 for data transfer.

Newcastle city centre – simulation set 2

Figure 4 shows the execution timelines for the Newcastle

City Centre simulations – simulation set 2. The Amazon

Quad XL instances used for this simulation set were

capable of running six simulations per instance, requir-

ing a total of six instances. Simulations were allocated to

instances in order – hence simulations 1 to 6 were run on

instance 1. Note that simulation 36 was started manually

later as there was a bug in the original code which failed

to launch it.

The total simulation time for all 36 runs was 4,589 hours

and fourminutes. However, due to the order in which sim-

ulations were allocated to instances the longest of each

set of six jobs kept the instance alive even though the

other simulations had finished. Thus the number of Cloud

instance hours was 2,361 costing a total of $4,722. This

equates to a real simulation cost per hour of $1.03. If jobs

had been grouped by expected execution time then this

could have brought the execution time down substantially.

Manually re-ordering the jobs would bring the number of

cloud hours down to 906 and the cost per simulation hour

down to $0.395.

Data egress for this simulation set was 10GB resulting in

a charge of $1.08. Note that all simulation sets apart from

set 1 required downloading of their data during Decem-

ber. The one free GB of data transfer has been arbitrarily

discounted from this set.

Newcastle city centre – simulation set 3

These simulations each required 40GB of RAM and were

run individually on Amazon Quad XL instances. Figure 5

shows the timelines for these simulation executions. Note

that only simulations 1 to 4 of each set of six were executed

as it was decided that the runtime for simulations 5 and 6

would take us beyond our month deadline. The red time-

lines indicate those simulations which failed to complete

before the month deadline was reached. These simula-

tions were manually terminated, although the results up

till the point of termination are still valid.

Table 6 Cost-time analysis for 40GB simulations on EC2

Name Cores Memory Concurrent Unit cost Hours Cost per simulation hour

Quad XL 26 68.4 1 $2.00 16,150 $2.00
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Table 7 Cost-time analysis for 3GB simulations on Azure

Name Cores Memory Concurrent Unit cost Hours Cost per simulation hour

Medium 2 3.5 1 $0.24 134,583 $0.24

Large 4 7 2 $0.48 134,583 $0.24

Extra Large 8 14 4 $0.96 134,583 $0.24

The simulations consumed a total of 6,856 hours and

50 minutes. However, with an average of three minutes

to deploy the instance and decompress the files, along

with an average of 30 minutes to compress the data

and upload it to Cloud storage this brings the number

of Cloud chargeable hours up to 6,929, costing $13,858.

This equates to a real simulation cost per hour of $2.02.

Thus the overhead for running this work on the Cloud is

marginal. A total of 18GB of data egress was required for

this simulation set at a cost of $2.16.

Newcastle city centre – simulation set 4

This single simulation was run on an Amazon HighMem-

ory XL instance taking 33 hours and 54 minutes. This

consumed 35 hours of Cloud time at a cost of $17.50. The

data transfer for this single job was just 195M – less than

$0.12. This single run produced a cost per simulation hour

of $0.51. However, an extra simulation of the 36 rain pat-

tern from set 6 was also run on this computer, thus giving

greater utilisation of the hardware.

Whole Newcastle city council area – simulation set 5

These simulations each required 20GB of RAM allow-

ing three simulations per Amazon Quad XL instance.

Figure 6 depicts the timelines for these simulations. Note

that the blue timelines indicate runs which were restarted

due to an error in the system. The total simulation time

is 3,623 hours and 21 minutes. With additional time for

Cloud initiation, file decompression, file re-compression

and file transfer this brings the number of Cloud charge-

able hours up to 2,212 costing $4,424, thus giving a

real simulation cost per hour of $1.22. This value is

roughly twice the expected value due to the late start-

ing of some of the jobs and the arbitrary ordering of

jobs. Re-ordering of these jobs could have brought the

number of Cloud hours down to 1,413 ($2,826) and a

simulation hour cost of $0.780. A total of 12GB of data

egress was required for this simulation set at a cost

of $1.44.

Thames estuary – simulation set 6

Only two 13GB simulations were run for this case, those

for simulations 24 and 36. These simulations took a total

of 322 hours and 42 minutes. This was achieved through

a total of 162 chargeable Cloud hours totalling $324. This

gives a real simulation cost per hour of $1.006 – very close

to optimal. Data transfer of 4GB added an additional cost

of $0.48.

Preliminary result of the CityCat simulations
We present preliminary results for two of the simulations

presented in Section ‘Scientific Experimental Environ-

ment’. The use of Cloud computing in performing these

simulations has generated a large amount of output which

now requires significant effort to process.

Newcastle city council area – simulation 5

The whole area of Newcastle City Council which covers

approximately 120 km2, depicted in Figure 7, was used

to demonstrate that by using Cloud Computing and City-

Cat, organisations would be able to model areas of such

scale for Surface Water Management Planning. Running

the model at such a scale (cell count) allows more accu-

rate predictions to be made. In urban catchments, water

pathways are quite complex because they are influenced

by the topography and man-made features. The conven-

tional approach of detailed modelling of small domains

is dangerous, however, because delineation of catchments

can be difficult in complex and dynamic situations. Larger

domains are therefore required to ensure inclusion of

upstream sources which may not be obvious a priori.

Thames estuary – simulation 6

The largest domain we simulated was the Thames estu-

ary with an area of approximately 1,100 km2. In order to

keep the cell count within bounds we used a cell size of

15 m – resulting in five million cells. The propagation of

the tidal surge upstream along the Thames was modelled

to see if CityCat could also be used in coastal and fluvial

Table 8 Cost-time analysis for 3GB simulations on GoGrid

Name Cores Memory Concurrent Unit cost Hours Cost per simulation hour

Server 4/4/200 4 4 1 $0.76 42,500 $0.76

Server 8/8/400 8 8 2 $1.52 42,500 $0.76

Server 16/16/800 16 16 5 $3.04 53,125 $0.608
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Table 9 Cost-time analysis for 3GB simulations on RackSpace

Name Cores Memory Concurrent Unit cost Hours Cost per simulation hour

4096/160 1 4 1 $0.252 128,174 $0.252

flood risk studies. The boundary condition for this simu-

lation was the tidal water level given as a function of time

and placed at the east boundary of the domain. Figures 8

and 9 illustrate the Thames tidal surge at 27 and 31 hours

after onset. The use of high-end Cloud instances allows us

to model the effects of a tidal surge at an unprecedented

level of detail and scale. This development could have sig-

nificant impact on modelling of such phenomena around

the world in the future.

Non-functional issues with Cloud deployment
Local alternatives

As discussed in the section ‘Cost-time analysis for the

CityCat simulations’ the main benefits of using the Cloud

come more from the rapid provisioning of resources

to meet immediate deadlines rather than the cost-

effectiveness of resources, especially over the whole life-

time of a resource. Large organisations, such as univer-

sities, are constantly looking at the long term benefit of

the purchases they make. Hence, given the scenario where

money is to be spent on a short-term benefit of Cloud

computing as opposed to purchasing of local resources

which could be used by others over a longer period of time

the university naturally favours the latter.

However, given a situation where strict deadlines pre-

vent the purchasing of enough resources in a timely

enough manner to meet requirements, this long-term

view can often be too restrictive. A careful balance needs

Figure 3 Simulation run times for Newcastle city centre

(simulation 1). Time profile for the one million cell simulation of

Newcastle City Centre at 2m by 2m resolution – simulation set 1.

to be drawn between short-term benefits and long-term

goals. In an ideal environment all would favour the long-

term goals and contribute their resources to a global pool

allowing others to obtain their short-term requirements

from this. However, if people instead favour the short-

term benefits then none can benefit from the global pool.

Persuading management that a short-term benefit is more

important can often be a challenge and requires manage-

ment to fully appreciate the need for rapid turn-around.

Credit cards

The (apparent) democratic process for access to Cloud

resources is achieved by a credit card purchasing model.

It is assumed that anyone in a position to purchase time

on the cloud will be in possession of a credit card and

that this is the Cloud providers’ only requirement for any

user. Although this simplifies the process – if you have

money (or credit) then you can use the resources – it has

knock-on effects when purchasing significant amounts of

computational time on the Cloud. A credit limit of say

$10,000 is easy enough to obtain, though a limit of $32,500

which was needed for this project was much harder to

obtain.

This problem was compounded by the fact that many

large institutional organisations, including Newcastle

University, have tight regulations on credit card spends.

These include not only low credit limits but also maxi-

mum values for individual purchases. Also as the exact

cost of using the Cloud could not be determined a priori it

was difficult to convince the finance department that this

purchase was not going to spiral out of control.

Eventually a compromise was reached in which a lower

credit limit could be used by splitting the Cloud usage over

two billing periods along with tight monitoring of monies

spent.

Conclusions
Cloud computing has enabled higher resolution larger

scale modelling of pluvial flooding on a much larger scale

than usually performed. Additionally, the use of the Cloud

has provided access to enough resources to allow simulta-

neous simulations of different rainfall events required in

studies of flood risk.

Results of the city-wide pluvial flood risk simulations

for Newcastle upon Tyne obtained using Cloud comput-

ing show excellent correlation with the flooding observed

during the recent pluvial flood event in Newcastle. On

28th June 2012, over a period of two hours, 45 mm of

rain fell over the whole city. A more detailed verification



Glenis et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:7 Page 11 of 14

http://www.journalofcloudcomputing.com/content/2/1/7

Figure 4 Simulation run times for Newcastle city centre (simulation 2). Time profile for the four million cell simulation of Newcastle City Centre

at 1 m by 1 m resolution – simulation set 2.

study, which is currently being undertaken using crowed

sourced images of the flooding over the whole Tyne urban

area, will show the full potential for using Cloud comput-

ing in urban flood risk management and will be reported

elsewhere.

The city-wide application demonstrated here can be

replicated for other cities in the United Kingdom using

readily available data sets from the Ordnance Survey

(MasterMap building information) and airborne lidar

available from various providers. Similar data are avail-

able in many parts of the world and there is considerable

demand for such detailed urban flood risk assessments in

the insurance industry, government authorities and other

hazard management and civil protection agencies.

Figure 5 Simulation run times for Newcastle city centre (simulation 3). Time profile for the 16,000,000 cell simulation of Newcastle City Centre

at 0.5 m by 0.5 m resolution – simulation set 3.
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Figure 6 Simulation run times for whole Newcastle city council area (simulation 5). Time profile for the 7,500,000 cell simulation of Newcastle

City Centre at 4 m by 4 m resolution – simulation set 5.

Figure 7Water depth. Depth of water over the whole Newcastle city council area at the end of a rainfall event with duration of 1 hour and return

period of 100 years.
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Figure 8 Thames estuary at 27 hours. Flooding of Thames estuary due to the 1000-year return period tidal wave after 27 hours.

These simulations produced a huge amount of detailed

results which, in order to become meaningful to end

users, need to be combined and presented in the form

of maps and video animations. The automatic visual-

isation and analysis of flood risk was lost when the

numerical engine and the GUI of “CityCat” were sepa-

rated in order to be deployed on the Cloud for parameter

sweeps. Therefore, a potential area for further develop-

ment is automatic creation of flood risk maps and ani-

mations based on the CityCat results generated on the

Cloud.

Although this work does not present a motivational

case for using the Cloud based on financial concerns it

does support the notion that Cloud computing can pro-

vide rapid access to computational resources as and when

needed without the need for significant financial outlay

and continued expenses for maintaining the resources.

This can be of particular benefit to organisations for

whom performing such computational work is an infre-

quent process.

Significant care needs to be taken to ensure high util-

isation of Cloud resources to ensure that they are cost-

effective. This is no different to the utilisation issues

for existing HPC facilities. As each individually ‘rented’

resource is now charged for independently this can

quickly lower the utilisation and hence increase the cost

per simulation hour. Adaptation of the Cloud deployment

tool to take into account the expected execution time of

the different runs could help alleviate much of this prob-

lem. However, the additional costs for using the Cloud –

data transfer and (de)compression – are relatively small in

these cases and have little impact on the overall cost of

using the Cloud.

The adaptation of an application to run as a parameter

sweep is often a non-trivial task – as in this case. How-

ever, this process only needs to be performed once and

would still have been needed if the application were to

have been run on locally provisioned resources. The ben-

efits of adaptation of the code are easily apparent – the

ability to run parameter sweeps of simulations concur-

rently and the ability to script multiple scenarios quickly.

This is an example of where closer inter-relationships

between those experienced in using parameter sweep exe-

cutions and the Cloud and those who are experts in the

science is essential to ensure the transfer of appropri-

ate skills. Although this process consumed a significant

amount of effort, the ability to process more than 15,450

hours (∼21 months) of simulation time within one cal-

endar month is significant and can be re-used easily in

the future.

Figure 9 Thames estuary at 31 hours. Flooding of Thames estuary due to the 1000-year return period tidal wave after 31 hours.
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